
NASA Technical Memorandum 1 02330 
ICOMP-89-20 

Numerical Investigation of an 
Internal Layer in Turbulent 
Flow Over a Curved Hill 

S.-W. Kim 
Institute for Computational Mechanics in I Propulsion 
Lewis Research Center 
Cleveland, Ohio 

October 1989 

( Y A q A - T M - 1 0 3 1 0 )  N U M E R I C A L  INVFSTIGATInh dF 
A N  T N T r Q N A L  L A Y F R  I Y  TUP3ULFNT FLqH OVER A 
t U R V r 3  H I L L  IrdA54- L e w i s  Rescarcn C e n t e r )  
44 Y C S C L  70n 

N 8 9 - 2 9 7 7 s  



NUMERICAL INVESTIGATION OF AN INTERNAL LAYER IN 

. 
TURBULENT FLOW OVER A CURVED HILL 

S.-W. Kim* 
Institute for Computational Mechanics in Propulsion 

Lewis Research Center 
Cleveland, Ohio 44135 

SUMMARY 

The development of an internal layer in a turbulent boundary layer 

flow over a curved hill is investigated numerically. The turbulence field 

of the boundary layer flow over the curved hill is compared with that of a 

turbulent flow over a symmetric airfoil (which has the same geometry as the 

curved hill except that the leading and trailing edge plates were removed) 
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to study the influence of the strongly curved surface on the turbulence 

field. The turbulent flow equations are solved by a control-volume based 

finite difference method. The turbulence is described by a 

multiple-time-scale turbulence model supplemented with a near-wall 

turbulence model. Computational results for the mean flow field (pressure 

distributions on the walls, wall shearing stresses and mean velocity 

profiles), the turbulence structure (Reynolds stress and turbulent kinetic 

energy profiles), and the integral parameters (displacement and momentum 

thicknesses) compared favorably with the measured data. Computational 

results show that the internal layer is a strong turbulence field which is 

developed beneath the external boundary layer and is located very close to 

the wall. Development of the internal layer was more obviously observed in 

the Reynolds stress profiles and in the turbulent kinetic energy profiles 

than in the mean velocity profiles. In this regard, the internal layers is 
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significantly different from wall-bounded simple shear layers in which the 

mean velocity profile characterizes the boundary layer most 

distinguishably. Development of such an internal layer, characterized by an 

intense turbulence field, is attributed to the enormous mean flow strain 

rate caused by the streamline curvature and the strong pressure gradient. 

In the turbulent flow over the curved hill, the internal layer begin to 

form near the forward corner of the hill, merges with the external boundary 

layer, and develops into a new fully turbulent boundary layer as the fluid 

flows in the downstream direction. For the flow over the symmetric airfoil, 

the boundary layer began to form from almost the same location as that of 

the curved hill, grew in its strength, and formed a fully turbulent 

boundary layer from mid-part of the airfoil and in the downstream region. 

Computational results a l s o  show that the detailed turbulence structure in 

the region very close to the wall of the curved hill is almost the same as 

that of the airfoil in most of the curved regions except near the leading 

edge. Thus the internal layer of the curved hill and the boundary layer of 

the airfoil were also almost the same. Development of the wall shearing 

stress and separation of the boundary layer at the rear end of the curved 

hill mostly depends on the internal layer and is only slightly influenced 

by the external boundary layer flow. 
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INTRODUCTION 

Turbulent flows subjected to various strain rates (in addition to the 

simple shearing strain rates) caused by streamline curvature, strong 

pressure gradient, separation and reattachment, swirl velocity and 

interaction of multiple number of shear layers are usually called "complex 

turbulent flows." The turbulence structure of such complex turbulent flows 

is more complicated than that of simple shear layer flows. Calculations of 

complex turbulent flows using various turbulence models such as the k-e 

turbulence models, algebraic Reynolds stress turbulence models (ARSM), and 

Reynolds stress turbulence models (RSM) yield rather unsatisfactory 

computational results (Kline, Cantwell & Lilley 1982). Many turbulence 

models, improved by modifying the standard form turbulence equations 

(usually, the dissipation rate equation for k-e and ARSM and the 

pressure-strain correlation term for RSM) to yield better computational 

results for a few flow cases, have produced worse agreement with the 

measured data than the standard turbulence models for other classes of 

turbulent flows (Persen 1986). In recent years, a number of efforts have 

been made experimentally to better understand complex turbulent flows by 

separating the mechanisms that produce the extra strain rates. For example, 

experimental investigations of turbulent flows in curved channels (Gillis & 

Johnston 1983; So & Mellor 1973) and turbulent flows over a curved hill 

(Baskaran, Smits & Joubert 1987) were made to study the effect of 

streamline curvature on turbulence structure. 

Turbulent shear layers over curved surfaces are highly sensitive even 

to a small amount of streamline curvature (Bradshaw 1969 & 1973). Bradshaw 

(1969) proposed a curvature correction method based on an assumption that 

such turbulent flows can be characterized by a "curvature parameter", that 
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is, the ratio of boundary layer thickness (6) to radius of curvature (R). 

In the curvature correction method, the mixing length is altered by a 

factor (F) given as; 

where U is the streamwise velocity, n is the coordinate normal to the 

streamline, r is the radius of curvature of the local streamline, and p is 

a constant coefficient. Application of the method to a number of turbulent 

flows with varying streamline curvatures revealed that the constant 

coefficient (/3) needs to be adjusted for different flows to obtain 

computational results in good agreement with the measured data. To take 

into account the varying coefficient (/3> for turbulent flows with different 

streamline curvature, a functional form of /3 which depends on the curvature 

Richardson number was also proposed (Gibson 1978). Many turbulence models 

incorporating a curvature correction method yield improved computational 

results for turbulent flows over mildly curved surfaces and the 

computational results help to better understand the turbulence structure of 

such flows; however, these turbulence models still fail to predict the 

turbulence field for turbulent flows with large streamline curvature. A 

discussion on the shortcomings of various curvature correction methods can 

be found in Gibson, Jones & Younis (1981). Gillis & Johnston (1983) found 

that turbulent flow over a curved surface reaches a "saturated state" as 

the streamline curvature is further increased and that many turbulence 

models did not yield meaningful results for such flows. Baskaran, Smits & 

Joubert (1987) presented experimental data for a turbulent boundary layer 

over a curved hill and a turbulent flow over a symmetric airfoil. The 
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curved hill and the airfoil shared the same geometry. They found that an 

internal boundary layer is formed beneath the external boundary layer over 

the curved hill and that the internal layer shares many similarities with 

the boundary layer flow over the symmetric airfoil. The experimental data 

also showed that the internal layer was insensitive to the external 

boundary layer and the curvature parameter (6/R). It was also suggested in 

Baskaran, Smits & Joubert (1987) that the effects of prolonged convex 

curvature can be more accurately represented by the ratio of the internal 

layer thickness to the surface radius of curvature than by the conventional 

curvature parameter. Here, detailed computational results for the turbulent 

boundary layer flow over the curved hill and the turbulent flow over the 

symmetric airfoil obtained using a multiple-time-scale turbulence model 

(Kim & Chen 1987; Kim 1988) are presented. The multiple-time-scale 

turbulence model (hereafter abbreviated as the M-S turbulence model), the 

near-wall turbulence model and the numerical method used herein are 

introduced below. 

It has been shown previously that the high Reynolds number M-S 

turbulence model yields accurate computational results for a number of 

complex turbulent flows. The wall-jet flow (Irwin 1973) and the 

wake-boundary layer interaction flow (Tsiolakis, Krause & Muller 1983) 

involve interaction of two turbulent shear layers. It is shown in Kim & 

Chen (1987) that the M-S turbulence model yields accurate computational 

results for these flows. It is also shown in Kim & Chen (1987) that the 

computational results for a backward-facing step flow (Kim, Kline & 

Johnston 1980) obtained using the M-S turbulence model compared somewhat 

more favorably with the measured data than those obtained using a Reynolds 

stress turbulence model. In the confined coaxial swirling jet (Roback & 
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Johnson 1983), the axial velocity in the center region is retarded by the 

influence of the swirl velocity and a large reversed flow region is formed 

in the core region of the flow. Due to the existence of the reversed flow 

region, which is often referred to as a "flame stabilizer" in combustors, 

the flow is subjected to a large amount streamline curvature. This flow 

also contains a separated and reattaching shear layer in the corner region. 

It can be found in Kim & Chen (1987) that the M-S turbulence model yields 

significantly improved computational results compared with those obtained 

using the standard k-• turbulence models. The experimental study of a 

reattaching shear layer in a divergent channel (Driver & Seegmiller 1985) 

was primarily designed to study the effect of pressure gradient on the 

development of Reynolds stresses and the reattaching shear layer, to 

identify any deficiency in turbulence closure models, and thus to improve 

predictive capability of turbulence models. A number of turbulence models, 

such as the k-e turbulence models and algebraic Reynolds stress turbulence 

models (ARSM), were shown to yield poor computational results for the flow 

(Driver & Seegmiller 1985). It was also shown that a modified ARSM yielded 

computational results which are in good agreement with measured data. 

However, generality of the improved predictive capability of the turbulence 

model for other complex turbulent flows has not been shown yet. On the 

other hand, the computational results obtained using the M-S turbulence 

model compared somewhat more favorably with the measured data than those 

obtained using the modified ARSM. Recall that the turbulent transport of 

mass and momentum is governed by the time scale of the energy containing 

large eddies and the dissipation of the turbulent kinetic energy is 

governed by the time scale of the fine scale eddies (Lumley 1983). In M-S 

turbulence models (Hanjelic, Launder & Schiestel 1980; Kim & Chen 1987; Kim 
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1988), the turbulent transport of mass and momentum is described using the 

time scale of the large eddies and the dissipation rate is described using 

the time scale of the fine-scale eddies. In this regard, a well posed M-S 

turbulence model can describe the turbulent transport process better than 

the single-time-scale turbulence models such as the k-e, ARSM, and RSM 

turbulence models. Single-time-scale turbulence models yield reasonably 

accurate computational results for simple turbulent flows; however, the 

predictive capability degenerates rapidly as turbulent flows to be solved 

become more complex. This nature may due to the use of a single time scale 

to describe both the turbulence transport mechanism and the dissipation 

rate. 

In numerical calculations of turbulent flows, wall function methods 

are most frequently used to model the near-wall region. The wall function 

methods have been derived from a logarithmic velocity profile which usually 

prevails in wall-bounded simple shear layer flows. The wall function 

methods are not valid if the logarithmic velocity profile no longer 

prevails in the near-wall region. For the turbulent flows considered 

herein, a strong inequilibrium turbulence field is formed in the region 

very close to the wall. Such a turbulence field can not be described 

adequately by the wall function methods. Many other cases for which the 

wall function methods become invalid can be found in Kim (1988). A detailed 

discussion on various approaches to be used in place of wall function 

methods, including their advantages and disadvantages, can also be found in 

Kim (1988). In the near wall turbulence model used herein, the turbulent 

kinetic energy equations are extended to include the near-wall low 

turbulence region and the energy transfer rate and the dissipation rate 

inside the near-wall layer are obtained from algebraic equations. The 
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algebraic equations were obtained from a k-equation turbulence model 

(Wolfshtein 1969). It would be appropriate to classify the method as a 

"partially low Reynolds number approach" to distinguish it from other 

classes of methods. This approach was first used in Chen and Pate1 (1987) 

to solve turbulent flows over airfoils. Recall that the turbulence length 

scale in the region very close to a wall is related to the normal distance 

from the wall while that of external flows is related to the flow field 

characteristics (Roshko 1976). This characteristic of wall bounded 

turbulent flows can be described quite accurately by the "partially low 

Reynolds number turbulence models." Development of the near-wall turbulence 

model and its application to fully developed turbulent channel and pipe 

flows can be found i n  K i m  ( 1 9 8 8 ) .  I t  has been shown in the reference that 

the present near-wall turbulence model can resolve the over-shoot phenomena 

of the turbulent kinetic energy and the dissipation rate in the region very 

close to the wall and that significantly improved computational results for 

the turbulence structure in the near-wall region are obtained. It is also 

interesting to note that a similar k-equation turbulence model, which forms 

the basis of the present near-wall turbulence model, yields fairly accurate 

computational results for a fully developed unsteady turbulent pipe flow 

(Tu & Ramaprian 1983). Incorporation of the same near-wall turbulence model 

into a k-4 turbulence model and its application to a yet different class of 

complex turbulent flows such as a supersonic turbulent flow over a 

compression ramp and a transonic flow over an axisymmetric curved hill can 

be found in Kim (1989a; 1989b). 

The numerical method used herein is based on the pressure correction 

method (Patankar 1980) which has been used most extensively to solve 

incompressible flows. However, the present numerical method is applicable 



for both incompressible and compressible flows with arbitrary, complex 

geometries. The capability to solve compressible flows is achieved by 

including a convective incremental pressure term into the pressure 

correction equation (Kim 1989a). The accuracy and the convergence nature of 

the numerical method have been demonstrated by solving a number of flow 

cases. The example problems considered in Kim (1989a; 1989b) include: 

developing channel and pipe flows, a two-dimensional laminar flow in a 90 

degree bent channel, polar cavity flows, a turbulent supersonic flow over a 

compression ramp, and a shock wave - turbulent boundary layer interaction 

in transonic flow over a curved hill. 

TURBULENCE EQUATIONS 

As introduced in the previous section, the M-S turbulence model yields 

accurate computational results for a number of complex turbulent flows 

subjected to various different types of extra strains. However, the model 

is relatively new and is discussed in some detail below. 

The M-S turbulence model is based on a simplified split-spectrum 

method (Hanjelic, Launder & Schiestel 1980). The transport equations for 

the turbulent kinetic energy of large eddies (la) and that of fine scale 
eddies (kt) are given as; 

Vt a k ,  
€P ( (v  +-) - ) - Pr - a 

“j--- 
axj axj “kp axj 



where Pr is the production rate of turbulent kinetic energy, and ep and et 

are the energy transfer and dissipation rates, respectively. Eqs. (1-2) 

imply that the turbulent kinetic energy is generated by the instability of 

the mean fluid motion, is transferred to the high wave number region, and 

is dissipated by the molecular viscosity of the fluid. This mathematical 

model is consistent with the physically observed evolution of the turbulent 

kinetic energy (Tennekes 6 Lumley 1972) except that the cascade process of 

the turbulent kinetic energy is over-simplified and is represented by the 

single energy transfer rate. This over-simplification is still better 

justified than the single-time-scale turbulence models if one considers 

that only the generation and dissipation of turbulent kinetic energy are 

considered in the latter classes of turbulence models. 

The energy transfer rate and the dissipation rate away from the 

near-wall region are given as; 

where the load functions in eqs. ( 3 - 4 )  were obtained from a physical 

dimensional analysis, and cpl and ctl (1==1,3) are the model constants. 

These model constants were obtained by solving a five by five system of 

equations and by numerically optimizing one model constant (ctl) to yield 

the best solution for a fully developed channel flow (Laufer 1949) and a 

plane jet exhausting into a moving stream (Bradbury 1965). One equation for 
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the model constants has been obtained from the equilibrium turbulent flow 

condition. Two equations have been obtained by transforming the 

multiple-time-scale turbulence equations into asymptotic turbulence growth 

rate equations which are equivalent to that of Harris, Graham & Corrsin 

(1977). The other two equations have been obtained by transforming the 

present turbulence equations into asymptotic turbulence decay rate 

equations which are equivalent to that given in Harlow and Nakayama (1968). 

The turbulence model constants are given as; Okp=0.75, 0,~==1.15, Okt-0.75, 

0,,-1.15. cpl-0.21, cp2-1.24, cp3- 1.84, ctl-0.29, ct2= 1.28, and ct3=l.66. 

Further discussion on the establishment of these turbulence model constants 

can be found in Kim & Chen (1987). 

The eddy viscosity away from the near-wall region is given as; 

ut - cpfk2/ep = cpk2/et (5) 

where c,f (-0.09) is a constant coefficient and c, - c,fet/ep is the 

effective eddy viscosity coefficient. In this equation, the turbulence 

length scale is related to the energy transfer rate of the energy 

containing large eddies rather than the dissipation rate of the fine-scale 

eddies. Experimental data show that the effective eddy viscosity 

coefficient (c,) decreases as the ratio Pr/et increases and increases as 

the same ratio decreases. The present M-S turbulence model yields the 

solution in such a way that: Pr>cp>et and c,<c,f for Pr>et; Pr=€p=Ct and 

c,-c,f for Pr=et; and e <et and c,>cpf for Pr<<ct. Thus the eddy viscosity 

given as eq. (5) yields a variation of the cp which is in good agreement 

with that observed in experimental data as well as that of the generalized 

algebraic stress turbulence models (Rodi 1972; Launder 1982; Kim & Chen 
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1988). 

The eddy viscosity equation proposed by Hanjelic et al., which is 

given as ut-cp($+kt)$/epl is compatible with near wall mixing length 

theory or with the standard near-wall analysis only when kt vanishes in the 

near wall region. On the other hand, the eddy viscosity given in eq. (5) is 

compatible with both the near wall mixing length theory and the wall 

function method. 

The energy transfer rate and the dissipation rate inside the near-wall 

layer are given as; 

where ~ l - - c ~ f ~ / ~ k ~ / ~ / u y  is the standard dissipation rate for near-wall 

turbulent flows in equilibrium state, f,-l-exp(-A,Rt) is a wall damping 

function, Rt-k2/ue1 is a turbulent Reynolds number, and A , = C ~ ~ ~ / ~ / ~ U ~  is a 

constant coefficient. The wall damping function was constructed in such a 

way that eq. ( 6 )  takes a limit value of 2vk/y2 for y=O and f, becomes unity 

in the region slightly away from the wall where the turbulence is in 

equilibrium state. For near-wall equilibrium turbulent flows, the 

production rate is approximately equal to the dissipation rate (Et) and 

hence the energy transfer rate (ep) from the low wave number production 

range to the high wave number dissipation range has to be approximately 

equal to both of them. Recall that the production rate vanishes on the wall 

and grows to a peak value at the wall coordinate (y+) approximately equal 

to 15. Hence eq. ( 6 )  may not be a good approximation for O<y+<15. However, 

use of the vanishing boundary condition for the turbulent kinetic energy on 

the wall yields a growth rate of turbulent kinetic energy and a production 
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rate that are in good agreement with experimental data as well as with 

theoretical analysis (Kim 1988). 

The eddy viscosity in the near-wall layer is given as; 

where fp-l-l./exp(AIJRt + A2Rt2) is a linear function of the distance from 

the wall in the viscous sublayer and becomes unity in the fully turbulent 

region. AI-0.025 and A2-0.00001 have been used for the near wall layer (see 

Kim 1988). The eddy viscosity given as eq. (7) grows in proportion to the 

cubic power of the distance from the wall. It can be found in Kim (1988) 

that the near-wall analysis yields the same growth rate of the eddy 

viscosity in the region very close to the wall. The improved predictive 

capability of the present turbulence model is attributed to the use of the 

multiple-time-scales, the physically consistent eddy viscosity equation, 

and the near-wall turbulence model. 

NUMERICAL METHOD 

The incompressible turbulent flow equations are given as;  

a a 
-(pu) +-(pv) - 0 .  
ax aY 

a a a aU a au av aP 
-((puu> + -((puv) = -(2pe-) + -(pe(-+-)) - - 
ax aY ax ax ay ay ax ax 

(9) 
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where x and y are spatial coordinates, u and v are Cartesian velocities, p 

is the density, pe (=p+pt) is the effective viscosity, p is the molecular 

viscosity, pt is the turbulent viscosity, and eqs. (8-10) follow from the 

conservation of mass, u-momentum, and v-momentum, respectively. In 

numerical calculation of incompressible flows, the conservation of mass 

equation is replaced by a pressure correction equation given as: 

- a [p*h;] + !-[p*b!!2] = v -  (P*V*) 

ax 

where the superscript (*) denotes the current values, A, and A, are 

coefficients relating the incremental velocities and the incremental 

pressure and the last term represents the mass imbalance. A similar 

pressure correction equation for both incompressible and compressible flows 

and its derivation can be found in Kim (1989a). In the present numerical 

method, the velocities are located at the same grid points and the pressure 

is located at the centroid of the cell formed by the four adjacent velocity 

grid points. Any other flow variables such as the turbulent kinetic energy 

and the dissipation rate are located at the velocity grid points. 

The control volume for the pressure correction equation is defined as 

the cell enclosed by the four neighboring grid points. The 

velocity-pressure decoupling is eliminated by treating the pressure 

correction equation as a continuous form partial differential equation 

(hereafter, abbreviated as p.d.e.) rather than treating it as a constraint 

14 



condition at each grid point. In the former case, the discrete pressure 

correction obtained from eq. (11) becomes a five-diagonal system of 

equations for rectangular grids. The off-diagonal terms are contributed 

only by the non-orthogonal grids and their magnitude is much smaller than 

that of the diagonal terms even for highly skewed grids. On the other hand, 

in the latter method (Vanka, Chen & Sha 1980), the discrete pressure 

correction equation, obtained by directly substituting the incremental 

pressure - incremental velocity relations into the conservation of mass 
equation, yields a nine-diagonal system of equations for orthogonal grids. 

This discrete pressure correction equation can yield a velocity-pressure 

decoupled solution, whereas the former equation does not. The present 

pressure correction equation is more like that of Braza, Chassaing & Ha 

Minh (1986) than the more standard pressure correction equation (Vanka, 

Chen & Sha 1980) in the sense that the equation is dealt as a continuous 

form p.d.e. In solving the discrete system of equations, the off-diagonal 

terms are moved to the load vector term and the resulting system of 

equations can be solved using a tri-diagonal matrix algorithm (TDMA). 

Incorporating the off-diagonals into the load vector term did not 

degenerate the convergence rate (Kim 1989a). 

In control-volume methods, the discrete system of equations is derived 

by integrating the governing differential equations over the control 

volume. For curvilinear grids, the required number of interpolations to 

obtain flow variables at the cell boundaries is significantly reduced by 

using the present grid layout. The enhanced convergence rate, even when 

highly skewed, unequally spaced, curved grids are used, is attributed to 

the pressure correction equation cast in a continuous form p.d.e. and the 

grid layout which required fewer interpolations. As shown in this paper, 



the method yields accurate computational results (i.e., free of numerical 

wiggles) for grid aspect ratios as large as a few thousand. The pressure 

correction equation cast in a continuous form p.d.e. is undoubtedly more 

advantageous than the more standard pressure correction equation (Vanka, 

Chen 6 Sha 1980) for the reasons discussed above. 

COMPUTATIONAL RESULTS 

The turbulent flow over a curved hill is schematically shown in Figure 

1. The chord length (C) and the height (H) of the curved hill and the 

airfoil are 1.284 meters and 0.208 meters, respectively. The unit Reynolds 

number based on the free stream velocity (lJ,-20 m/sec) is 1.33~10 6 /meter. 

In external flows, the location of the far field boundary and the boundary 

conditions specified at the far field can influence the computational 

results. In the present study, the dependence of the computational results 

on the grid size, the location of the far field boundary, and the boundary 

conditions prescribed at the far field boundaries has also been studied. 

In the experimental investigation of the turbulent flow over the 

curved hill, the flow was made turbulent using a trip wire located 0.65C 

upstream of the forward corner of the curved hill. Hence in the numerical 

calculations, the upstream boundary (dnl) was located 0.61C upstream of the 

forward corner of the curved hill. Inclusion of the trip wire in numerical 

calculation of the entire flow field is prohibitive at present due to the 

limitation imposed by the computational resources. Thus, the inlet boundary 

conditions for the tangential velocity, the turbulent kinetic energies, and 

the dissipation rates (ep and et) were obtained from experimental data for 

a fully developed boundary layer flow over a flat plate (Klebanoff 1955). 

The non-dimensional velocity and the turbulent kinetic energy profiles were 
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scaled to yield a boundary layer thickness of 0.044 meters at the inlet 

boundary. This inlet boundary condition is somewhat different from that of 

the tripped turbulent flow; however, it is considered to be a reasonable 

approximation to the tripped turbulent flow since development of the 

internal layer is less dependent on the external boundary layer flow as can 

be found in the following discussion. In a series of numerical tests for 

the flow over the curved hill, the downstream boundary was located at 1.4C 

and 1.9C downstream of the rearward corner of the hill, and the top 

boundary was located at 9.3H, 12.3H, and 15.9H away from the wall, 

respectively. The computational results were not sensitive to the location 

of the downstream boundary as long as it is located reasonably far away 

from the reversed flow region. Location of the top boundary (an2) 

influenced the computational results substantially. For the latter two 

cases (e.g., 12.3H and 15.9H), the computational results in the near-wall 

region were virtually the same and those in the far region differed by no 

more than one percent. The computational results presented herein were 

obtained with an2 and an3 located at 15.9H and 1.4C away from the wall and 

the rearward corner, respectively. The boundary conditions tested are: 

(1) Dirichlet boundary condition (DBC) for u and v along an2; and 

vanishing gradient boundary condition (NBC) for u and v and uniform 

pressure along an3 

and 

(2) NBC for u and v and uniform pressure along an2 and an3. 

In each case, u==v-kp-kt=O was specified on the solid wall boundary (an,) 
and the NBC for 5, k,, cp, and et was specified along an2 and an3. The 

computational results obtained using the two different sets of boundary 



conditions were virtually the same when the external boundary (an2 and dn3) 

was located far enough so that the extent of the external boundary does not 

influence the computational result. A part of these computational results 

are also shown in the following. 

For the turbulent flow over the symmetric airfoil, the far field 

boundaries were initially separated by the same distance from the airfoil 

as in the curved hill flow. Then the distances of the upstream (aril) and 

the downstream (8n3) boundaries were increased by approximately 0 . 5 C ,  

respectively, until the computational results became independent of the 

extent of the external boundary. The computational results presented herein 

were obtained with the upstream (aril) and the downstream (an3) boundaries 

separated by 2.lC and 3.1C from the forward and the rearward corners of the 

airfoil, respectively. Uniform flow velocities were prescribed at the 

upstream boundary. In the experiment, the flow was made turbulent using a 

trip wire installed at the leading edge region of the airfoil. However, 

inclusion of the trip wire in the numerical calculation of the entire flow 

is not feasible for the reason discussed previously. Hence in the numerical 

calculation, a small amount of turbulent kinetic energy (k=2.5x10- U, ) and 4 2  

a dissipation rate (~~-40 m 2 /sec 3 ) were prescribed at the inlet boundary so 

that the flow became fully turbulent from the leading edge region of the 

airfoil. For this boundary condition, the turbulent viscosity at the inlet 

boundary is approximately equal to the kinematic viscosity of the fluid. 

The boundary conditions along the an2 and an3 boundaries were the same as 

the first case of the curved hill flow. A symmetric boundary condition was 

used for all flow variables along the symmetry line in front of and behind 

the airfoil. Boundary conditions along the airfoil were the same as those 

used in the flow over the curved hill. 
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A number of meshes were also tested in conjunction with the domain 

independence study to obtain grid independent solutions. In each case, the 

discrete finite difference system of equations was solved iteratively until 

the relative error for all flow variables became less than the prescribed 

convergence criterion (5X10-5). A 143x77 mesh for the flow over the curved 

h i l l  and a 146x77 mesh for the flow over the airfoil are shown in Figure 2 .  

The grid spacings transverse to the flow direction are the same in each 

case. The average grid size (Ay+) to the first grid point from the wall is 

approximately 0.8 (i.e. , An-2~10-~ meters). The grid size in the normal 

direction was increased by a factor of 1.15 approximately. The partition 

between the near-wall layer and the external region was located at y+=200 

and 27 grid points were used inside the near-wall layer. The M-S turbulence 

model predicted the reversed flow regions at the rear end of the curved 

hill and the airfoil for all the cases tested in the present study. All the 

computational results presented herein, except the streamline contours 

shown in Figure 3, were obtained using the fine mesh. 

The streamline contours for the flows over the curved hill and the 

airfoil obtained using the medium mesh (92x60 grid points in each case) are 

shown in Figure 3 .  For the medium mesh, the average grid size (Ay+) to the 

first grid point from the wall was 80 (i.e., An-0.001 meters). The 

partition between the near-wall layer and the external domain was located 

at y+=300 and 3 grid points were allocated inside the near wall layer. The 

calculated mean velocity, pressure, and turbulence fields were in fair 

agreement with the measured data. 

The calculated static pressure distributions on the walls of the 

curved hill and the symmetric airfoil are compared with the measured data 

in Figure 4, where the pressure coefficients (c ) were obtained by P 



normalizing the pressure distributions by the free stream dynamic pressure 

(O.SpU,*>. The calculated static pressure distribution along the symmetry 

line of the entire computational domain is also shown in the upper right 

corner of the figure. It can be seen from this figure that the numerical 

method does not yield an unphysical oscillatory solution for the mesh with 

the grid aspect ratio as large as a few thousand. Note that the measured 

data exhibit pressure jumps at the plateau of the hill and the airfoil. The 

pressure gradients caused by these jumps are believed to be strong enough 

to disturb the mean flow field and the disturbed mean velocity may leave 

some evidence in the measured wall shearing stress, at least slightly; 

however, such an evidence is not found in the measured wall shearing 

stress. It is not clear if these pressure jumps really existed or were 

caused by the interference of the wind tunnel wall or the measuring device. 

The cause of such pressure jumps was not clarified in Baskaran, Smits & 

Joubert (1987). Such pressure jumps were not detected in the present 

calculations. It can be seen in the figure that the calculated pressure 

distributions compare favorably with the measured data, in general. The 

pressure distributions on the curved hill obtained using the two different 

boundary conditions are almost the same and almost collapse into a single 

line as shown in this figure. This indicates that the far field boundary 

condition can be implemented in one way or another as long as it is located 

far away from the wall. Also note that the measured pressure distribution 

on the wall of the airfoil is somewhat higher than the calculated result. 

This discrepancy might have been caused by the interference of the wall 

and/or measuring device in the experiments. This fact is further clarified 

in the following by comparing the measured and the calculated mean velocity 

profiles . 
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The calculated wall shearing stresses for the curved hill and the 

airfoil are shown in Figures 5 and 6, respectively, where the friction 

coefficients (cf) were obtained by normalizing the wall shearing stresses 

by the free stream dynamic pressure. As discussed in the previous 

paragraph, the wall shearing stresses obtained using the two different 

boundary conditions almost collapsed into a single line so that the present 

computational results are independent of the extent of the far field 

boundary and the boundary conditions prescribed at the far field boundary. 

The measured data and the computational results obtained using a curvature 

correction method (Baskaran, Smits & Joubert 1987) are also shown in this 

figure for comparison. It can be seen in Figure 5 that the calculated wall 

shearing stress for the curved hill is slightly smaller than the measured 

data near the inlet boundary. This discrepancy is attributed to the inlet 

boundary condition obtained from a fully developed turbulent boundary layer 

flow. Apparently, the mass flow rate entering the computational domain 

prescribed by the velocity profile for a fully developed turbulent flow is 

smaller than that for the developing velocity profile made turbulent with a 

trip wire. The influence of the slightly smaller mass flow rate is observed 

in the wall shearing stress distribution throughout the curved hill. In 

Figures 5 and 6, " S "  represents the separation location and "R" represent 

the reattachment location. The M-S turbulence model predicted the small 

reversed flow region near the rear end of the curved hill. On the other 

hand, the calculated wall shearing stress using the curvature correction 

method is in close agreement with the measured data. This accurate 

computational result may due to the use of a boundary layer flow solver 

which incorporates the measured pressure distribution on the wall (or, 

equivalently, the external mean flow velocity). However, the curvature 
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correction method failed to predict the reversed flow region in the rear 

end of the curved hill. For the flow over the symmetric airfoil, the 

present computational result is in excellent agreement with the measured 

data. This excellent agreement is attributed to the the fact that the mass 

flow rate of the flat inlet velocity profile is in closer agreement with 

that of the experiment and to the use of the M-S turbulence model which can 

describe the turbulence field in a developing boundary layer flow more 

accurately. The wall shearing stress obtained using the same boundary layer 

flow solver and the curvature correction method does not compare very well 

with the measured data. This disagreement may be due to the curvature 

correction method which can not resolve the strong, developing turbulence 

field even though the measured pressure (or, the external potential 

velocity) is used in the boundary layer calculations. Again, the present 

computational result shows the reversed flow region located near the 

trailing edge of the airfoil while the curvature correction method fails to 

predict such a reversed flow region. It is shown in Figure 6 that the 

separation location for the airfoil compares more favorably with the 

measured data than it does in the case of flow over the curved hill. 

The mean velocity profiles for the flow over the curved hill and the 

airfoil at four downstream locations are compared with the measured data in 

Figure 7,  where the measured mean velocity profiles in physical units were 

recovered from the measured velocity profiles given in non-dimensional form 

using the measured wall pressure. In this figure, s’-s-0.074 meters and 

0.074 meters represent the correction factor for effective origins of the 

two flows based on the pressure gradient parameter, see Baskaran, Smits & 

Joubert (1987) for details on the effective origin. It can be seen 

figure that the calculated and the measured mean velocity profiles 

in this 

exhibit 



good comparison in general. For the flow over the airfoil, a fluid particle 

along the symmetry line is brought to zero velocity at the forward 

stagnation point and a strong adverse pressure gradient is formed in this 

region. Due to the strong adverse pressure gradient, the velocity in this 

region is significantly retarded. The computational results show that the 

mean tangential velocity for the airfoil in this region is smaller than 

that for the curved hill. The computational results also show that the 

tangential velocity for the airfoil is slightly larger than that for the 

curved hill in farther downstream locations. These results simply reflect 

that the inlet mass flow rate for the airfoil is larger than that for the 

curved hill in numerical calculations. Note that the measured mean velocity 

profiles for the airfoil at s'-1.139 meters and 1.862 meters are smaller 

than those for the curved hill. The smaller mean velocity for the airfoil 

in this region is due to the slightly higher pressure distribution in the 

plateau region of the airfoil which is subjected to a slight experimental 

uncertainty as discussed previously. 

The calculated displacement and momentum thicknesses are compared with 

the measured data in Figures 8 and 9, respectively. The displacement 

thickness (6*) and the momentum thickness ( 8 )  were calculated using 

equations given as: 

U 
6" = 1 (1 - - - >  dn 

U 
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where Up=Upwekn is the local potential velocity, Upw=U,( 1-cpw)1/2 is the 

potential velocity on the wall, k is the curvature of the surface, and n is 

the normal distance from the wall. Eqs. (12) and (13) were used in So & 

Mellor (1973) and Baskaran, Smits & Joubert (1987) to study thin shear 

layers over curved surfaces, since the classical boundary layer theory and 

the relationship between the potential velocity (U,) and the wall pressure 

given as "p,+0.5pU,2-constantn does not hold very well for flows over 

curved surfaces. It can be seen in these figures that the calculated 

results and the measured data compare favorably in general. The calculated 

displacement and momentum thicknesses of the curved hill near the inlet 

boundary are slightly larger than the measured data. These slight 

discrepancies are again due to the inlet boundary condition as discussed 

previously. However, as the flow approaches the curved hill, these 

discrepancies disappear and the calculated results are in excellent 

agreement with the measured data. This observation partly shows that the 

development of the internal layer on the curved hill is only slightly 

influenced by the approaching external boundary layer flow. It has been 

shown in Figure 7 that the mean velocity profiles for the curved hill and 

the airfoil at s'-1.139 meters are almost identical. However, the 

displacement thickness and the momentum thickness of the flows over the 

curved hill and the airfoil, which were obtained from almost the same 

velocity profiles, are significantly different in the same region near the 

leading edges as shown in Figures 8 and 9. These disagreements may due to 

the use of the boundary layer theory for flows over curved surfaces 

somewhat beyond its applicable limit. Recall that eqs. (12) and (13) were 

originally intended to be used for flows over curved surfaces with very 

small curvature (So & Mellor 1973). The turbulent flow approaching the 
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curved hill is highly retarded due to the strong adverse pressure gradient 

existing near the leading edge of the curved hill and thus the displacement 

and the momentum thicknesses are increased significantly in this region. 

The same flow slightly beyond the leading edge is subjected to far stronger 

favorable pressure gradient and is accelerated enormously. Thus the 

displacement and the momentum thicknesses decrease abruptly. In farther 

downstream, the internal layer is formed gradually and thus these 

thicknesses grow gradually until the flow is subjected to separation at the 

rear end of the curved hill. Near the separation point, these integral 

parameters increase abruptly again. It was suggested in Baskaran, hits & 

Joubert (1987) that the wavy nature of the displacement and momentum 

thicknesses of the flow over the curved hill might have been caused by the 

use of the trip wire. However, as discussed in the above, the present 

computational results suggest that the wavy nature of these integral 

parameters is inherent to the flow over the curved hill. It is also 

interesting to note that any turbulence model incorporating wall function 

methods may not be able to describe the turbulence field over the curved 

hill adequately partly due to the complex turbulence structure of the 

internal layer and partly due to the wavy nature of the boundary layer 

thickness. For example, the optimal distance from the wall where a wall 

function method can be applied is obscured due to the rapidly varying 

boundary layer thickness. 

The calculated Reynolds stress profiles for the flow over the hill and 

the flow over the airfoil at a number of downstream locations are shown in 

Figure 10. The same Reynolds stress profiles in wall coordinates are shown 

in Figure 11. It can be seen in Figure 10 that the calculated Reynolds 

stress profile at s-0.710 meters is slightly more spread out than the 
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measured data. This discrepancy is again attributed to the inlet boundary 

condition obtained from a fully developed boundary layer flow. At farther 

downstream locations, the calculated and the measures Reynolds stress 

profiles are in fair comparison with the measured data qualitatively and 

quantitatively. The form of the Reynolds stress profile at s-0.710 meters 

is similar to that of a wall-bounded simple shear layer flow and it belongs 

to the external boundary layer flow. It is shown in Figure 10 that the 

strength of the Reynolds stress of the external boundary layer flow decays 

gradually and that of the newly forming internal layer grows rapidly as the 

fluid travels in the downstream direction. At farther downstream locations, 

these two Reynolds stress profiles merge together and form a new profile 

which is similar to that of a wall-bounded simple shear layer flow. Thus 

the shape of the Reynolds stress profiles in most parts of the curved hill 

are distinctively different from those found in wall-bounded simple shear 

layer flows. It can be seen in Figure 11 that there exists a slight 

difference between the near-wall Reynolds stress profiles of the flow over 

the curved hill and the flow over the airfoil due to the different upstream 

turbulence structure. It can also be found that the maximum magnitude of 

the Reynolds stress is located at y+=20. The average physical distance from 

the wall to this location is approximately equal to 4 ~ 1 0 - ~  meters and thus 

detailed measurement of the turbulence structure in this region can be very 

difficult. Development of the maximum Reynolds stress along the flow 

direction is shown in Figure 12. For the flow over the curved hill, a large 

amount of Reynolds stress is convected downward from the upstream, while 

the magnitude of the Reynolds stress convected downward in the flow over 

the airfoil is almost negligible. However, as the flows approach the 

plateaus of the curved hill and the airfoil, the maximum Reynolds stresses 
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of these distinctively different flows become almost the same. Thus it is 

found that the highly intense turbulence field of the flow over the curved 

hill is almost independent of the upstream turbulence level and mostly 

dependent upon the curvature of the curved hill. 

The turbulent kinetic energy profiles of the curved hill and the 

airfoil at a number of downstream locations are shown in Figure 13 and 

those in wall coordinates are shown in Figure 14. Development of the 

maximum turbulent kinetic energy along the flow direction is shown in 

Figure 15. The turbulent kinetic energy profile at s-0.710 meters shows 

that the turbulence intensity of the tripped flow is larger than that of 

the fully developed boundary layer flow. However, at downstream locations, 

the calculated turbulent kinetic energy profiles are in good agreement with 

the measured data. This good agreement at downstream locations indicates 

that the development of the turbulence field in turbulent flows over 

strongly curved surfaces depends only slightly on the upstream turbulence 

intensities. It also indicates that the M-S turbulence model can correctly 

predict the turbulence fields in a strongly inequilibrium state. It is also 

shown in Figure 15 that the upstream turbulence intensity of the flow over 

the curved hill is higher than that of the flow over the curved hill near 

the inlet boundaries and that the turbulence intensities of these two flows 

become almost the same at farther downstream locations for the same reason 

as discussed previously. 

CONCLUSIONS AND DISCUSSION 

Detailed computational results for the turbulent flows over a curved 

hill and a symmetric airfoil obtained using a multiple-time-scale 

turbulence model were presented. The computational results show that an 
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internal layer is developed beneath the external boundary layer. The 

development of the internal layer depends mostly on the mean flow strain 

rates distributed over the curved hill and is only slightly influenced by 

the external boundary layer flow. The curved hill and the airfoil shared 

the same geometry. The pressure distributions on the walls, the wall 

shearing stresses, and the mean velocity profiles for the flow over the 

curved hill and the airfoil were almost the same. Thus the mean flow strain 

rates are also almost the same in these two flows. The internal layer of 

the flow over the curved hill, which was caused by almost the same mean 

flow strain rate as that of the airfoil, was also very similar to the 

boundary layer flow developed over the symmetric airfoil. It can be seen 

from these numerical results, as well as from the measured data, that the 

development of the turbulence field on strongly curved surfaces depends 

only slightly on the external (or, the upstream) flows and depends mostly 

on the mean flow strain rate caused by the curved surfaces. Thus the 

development of the turbulence fields in these two flows are similar to the 

saturated behavior observed in turbulent flows over strongly curved 

surfaces. 

In the turbulent flow over the curved hill, the pressure gradient 

changes from adverse to favorable and back to adverse again. The 

displacement and momentum thicknesses of the boundary layer flow subjected 

to this pressure gradient increased abruptly near the forward corner of 

the curved hill, decreased significantly and increased gradually along the 

curved hill, and then increased abruptly again near the rear end of the 

curved hill where the flow separates. Thus the wavy nature of these 

integral parameters as observed in the numerical results and in the 

measured data is considered to be the inherent nature of the flow over the 



curved hill. 

The development of the internal layer was more obvious in the 

turbulence field (the Reynolds stress profiles and the turbulent kinetic 

energy profiles) than in the mean velocity profiles. Thus the internal 

layer can be characterized as a strong turbulence field developing 

underneath the external boundary layer and in the region very close to the 

wall. Development of such a strong turbulence field was caused by the mean 

flow strain rate. Therefore, development of the internal layer slightly 

lags that of the mean velocity field. 

In the flow over the curved hill, the turbulence intensity of the 

external boundary layer becomes weaker while that of the internal layer 

becomes stronger as the fluid flows in the downstream direction. Both the 

calculated and the measured data showed that the turbulence fields of the 

external boundary layer and the internal layer merged together in the 

middle region of the curved hill and formed a new turbulence field which is 

similar to that of a wall-bounded simple shear layer at the rear end of the 

curved hill. The internal layer was located very close to the wall and thus 

development of the wall shearing stress and the flow separation at the rear 

end of the curved hill were determined solely by the internal layer. The 

velocity profiles and the wall shearing stress distributions on the curved 

hill and the airfoil were almost the same. Thus the logarithmic velocity 

profiles, obtained by non-dimensionalizing the mean velocity profiles using 

the wall shearing stress, for the curved hill and the airfoil are also very 

similar as can be found in Baskaran, Smits & Joubert (1987). However, the 

Reynolds stress and the turbulent kinetic energy profiles slightly away 

from the near-wall region of the curved hill are significantly different 

from those of the airfoil. From these results, it is found that the 



logarithmic velocity profile alone is not sufficient to characterize the 

complex turbulent flow over the curved hill. 
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FIGURE 1. - WNCLATURE FOR TURBULENT FLOW OVER A CURVED HILL. 
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( a )  CURVED HILL. 

(bJ S Y M E T R I C  AIRFOIL. 

FIGURE 2. - DISCRETIZED FLOW W I N S  
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( a )  CURVED HILL. 

(b) SYMMETRIC AIRFOIL. 
FIGURE 3. - STREAMLINE CONTOURS. 
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located very close to the wall. Development of the internal layer was more obviously observed in the Reynolds stress profiles and in the 
turbulent kinetic energy profiles than in the mean velocity profiles. In this regard, the internal layers is significantly different from wall- 
bounded simple shear layers in which the mean velocity profile characterizes the boundary layer most distinguishably. Development of such an 
internal layer, characterized by an intense turbulence field, is attributed to the enormous mean flow strain rate caused by the streamline 
curvature and the strong pressure gradient. In the turbulent flow over the curved hill, the internal layer begin to form near the forward corner 
of the hill, merges with the external boundary layer, and develops into ii new fully turbulent boundary layer as the fluid flows in the 
downstream direction. For the flow over the symmetric airfoil, the bour~dary layer began to form from almost the same location as that of the 
curved hill, grew in its strength, and formed a fully turbulent boundary layer from mid-part of the airfoil and in the downstream region. 
Computational results also show that the detailed turbulence structure in the region very close to the wall of the curved hill is almost the same 
as that of the airfoil in most of the curved regions except near the leading edge. Thus the internal layer of the curved hill and the boundary 
layer of the airfoil were also almost the same. Development of the wall shearing stress and separation of the boundary layer at the rear end of 
the curved hill mostly depends on the internal layer and is only slightly influenced by the external boundary layer flow. 
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